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R E G U L A R I Z A T I O N  O F  N O N S T A T I O N A R Y  P R O B L E M S  

F O R  E L L I P T I C  E Q U A T I O N S  

P. N. Vabishchevich and A. Yu. Denisenko UDC 519.63 

W e  cons ider  propert ies and  prove stationarity o f  regularized approx imat ions  o f  one o f  the prob lems  with 

reverse t ime fo r  a hyperbolic equation. Via t ime reversal, the latter is conver ted  to an elliptic equation. 

An extensive class of science and engineering problems reduces to solving incorrect problems for elliptic 

equations. In the form of the problem of extending the solutions of elliptic equations and the Cauchy problem, we 

formulate some inverse problems of thermophysics, mechanical engineering, prospecting geophysics, plasma 

physics, etc. For example, in a number of cases the determination of the temperature in a certain region and on a 

part of its boundary with a redefinition of the conditions on the other part (the temperature and the heat flux are 

specified) can be reduced to solving the Cauchy problem for an elliptic equation (the stationary boundary-value 

inverse problem [1 ]). Problems of this type are incorrect in the classical sense because of the violation of the 

condition of solution stationarity relative to the disturbance of additional conditions generally prescribed with an 

error (for example, errors of the temperature measurement at the region boundary). Nonstationarity generates 
great difficulties at the stage of problem solution, and therefore it is urgent to devise stationary methods of solution, 

substantiate their regularizing properties, and compare various approaches. As applied to the Cauchy problem for 

an elliptic equation, the present work considers the regularizing properties of two approaches: the use of a nonlocal 

boundary condition and the variational formulation of the initial problem. We obtained, in particular, the 

equivalence conditions for the solutions of nonlocal and extremal problems. 
Statement of the Problem. Let D denote a bounded region of the n-dimensional space R n and 0D, the 

boundary of the region. In Rn• - oo < t < co } we consider the finite cylinder QT = {(x, t) I x ~ D, 0 < t < T} 

with the lateral surface F = { (x, t) I x E 0D, 0 < t < T}, where x = (xl ,  x2 . . . . .  xn}. We define for x ~ D the elliptic 

operator 

ij=l ~x/ at: (x) + aO (x) u .  (1) 

Everywhere below, for the operator A and the convex region D we assume the following conditions to be fulfilled: 

f~1 i <- aij ~i ~] < /~2  i , 0 < a 0 < / z  3 , 
i=1 i ,j=l i=1 (2) 

aij ayi , a 0 aiy ~ C 1 (D) , OD E C 2 = �9 , , / z i > 0 ,  i = l ,  2 .  

In the region Q T  w e  consider the problem of obtaining u(x, t) from the equation 

02----~U - A u  = O , ( x ,  t) e QT (3) 

ot 2 

with the homogeneous boundary conditions 

u ( x ,  t ) = 0 ,  (x,  t ) � 9  (4) 
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and Cauchy conditions of the form 

0U(x 0) = 0  x E D ,  (5) 
Ot ' 

u ( x ,  0 ) = ~ o ( x ) ,  x E D .  (6) 

Among the approaches to solving the nonstationary problem of evolutionary type (3)-(6) it is possible to 
separate: construction of regularized difference schemes [3-5], a quasiinversion method [5, 6 ], a variational 

formulation of the initial problem [7 ], and use of a disturbance of the Cauchy conditions that is nonlocal with 

respect to t [8-10]. 

We examine the following extremal formulation of problem (3)-(5): to find a minimum of the smoothing 
functional 

: (z) = II u ( x ,  0)  - ~o ~ (x) II z + ~ II z (x) II 2 (7) 

with the constraint 

u ( x ,  T) = z ( x ) ,  x E D  (8) 

and with conditions (3)-(5) fulfilled for u(x, t). In the expression for J(z), a > 0 is a regularization parameter [2 ] 

and II �9 n is a norm in L2(D). In addition, Eq. (7) takes into account that, instead of condition (6) with a precisely 
specified function T, we have 

u ( x ,  0)=~o ~(x) ,  x ~ D ,  (9) 

where 7, 6 is a disturbed function, for which the following expression holds true: 

II ~o (x) - ~,6 (x)I1_< ~ (10) 

(6 is the error level). Employing functionals (7) is one of the ways of attaining solution stationarity for many 

incorrect problems [2 ]. The first term in the right side of Eq. (7) is a so-called discrepancy functional [1, 2 ], and 

the second is a stabilizing (smoothing) term. 

It turned out that the problem with a nonlocal boundary condition utilizing a deflection of the values of the 

function u(x, t) from t = 0 to a certain time T* _> T is closely adjacent to an extremal problem. Here we consider 

problem (3)-(5) with the nonlocal condition 

u(x ,  O)+/3u(x,  T*)=cT'~ (x), T*>_T, x E D ,  (11) 

where/3 is a regularization parameter and c is a constant close in magnitude to unity. 

Equivalence of the Solutions of Nonlocal and Extremal Problems. To obtain the conditions of equivalence 

of the solutions of the two formulated problems we use their representation as a Fourier expansion. Let eigenvalues 

of the operator A be denoted by ;t k, k -- 1, 2 . . . . .  0 < 21 < 22 < ... < 2k < .... and co t be the corresponding 

orthonormal system of eigenfunctions. Let ( . , . )  be the scalar product in L2(D) with the norm 

II:I12= ~, :) = ff2dx. 
D 

It is easy to verify that the operator R(T, a) that gives the solution z(x) = R(T, a)Ta(x) of problem (3)-(6) has 
the form 

R (T, a) = ch (T v~)  (12) 
1 + a ch 2 (T V-A') 

o r  
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ch (T 2X~k ) 
(x) = 

k=l 1 + a ch z (T V~k ) 0~ c~ (x) ,  
Z 

where ~o~ = (~o ~, COk). We point out immediately that, in the obtained representation of the solution z(x) of the 

problem of minimizing the smoothing functional, higher harmonics (~k -> oQ) are "cut off" due to the stabilizing 
factor 7k = (1 + a ch2(TVr~-k)) -1. This behavior of z(x) permits us to count on solution stationarity. 

The corresponding operator that gives the solution of the problem with the nonlocal condition (3)-(5) and 
(11) has the form 

ch (T vr-A -) (12') R ( T ,  co) = c -  
1 + f l  ch (T* vrA-) " 

Comparing expressions (12) and (12') by direct checking, it is possible to be convinced that the following assertion 
is valid. 

T H E O R E M 1 (of equivalence). The solution of the extremal problem (3)-(5), (7), and (8) coincides 

with the solution of the nonlocal problem (3)-(5) and (11) at T* = 2T, c = 1/(1 + a / 2 ) ,  and fl --- a / ( 2  + a) .  

Thus, it is established that the extremal problem and the problem with a nonlocal condition are reducible 

to one another. This fact may be employed both in the theoretical s tudy of the indicated problems and in their 

numerical solution. 

Regularizing Properties of Extremal and Nonlocal Problems. We denote by w22,0(D) the subspace of w~(D) 

in which all functions twice continuously differentiable in D and equal to zero on OD are a dense set. Under  

constraints (2) imposed on the operator A and the region D, the expression II u II ~ = (Au, Au) is equivalent to the 
norm in w~,o(D) and any function u from this space is expanded into the series 

u (x) = ~ u k o~, (x) ,  u~ = (u,  ~ok), 
k=l 

that converges to u (x) in the norm of w~,0 (D) [ 11 ]. Here the equality 

2 ~ 2 
II u (x)II 2 = A~ u~. 

k=l 

is true. 

T H E O R E M 2. Let ~o, ~o6E L2(D), II ~o - 9, 6 I] < 6, and the exact solution u(x, T) = R(T, 0)~o(x) of 

problem (3)-(6) be bounded in w~,0(D): 11 u(x, T) 112 --- M. Then, as 6 -> 0 and a(6)  --> 0, the solution z(x) of 

problem (3)-(5), (7), and (8) converges to u(x, T) in W2,o(D) and the stationarity evaluation 

II z 112 --- 8 ~oa ae2----- ~ II II. (13) 

is valid. 
P r o o f. We first prove evaluation (13). Taking into consideration Eq. (11), we examine the expression 

2 ch 2 (7" r 
Ilzll 2~- I I R ( T , ~ ) ~ o  .112 ) =  ~ Ak 

k=l  (1 + a ch 2 (T v~-k-k)) 2 (~~ ~ < 

2 2 
0o 22 ~ 4 2k 

--< E a2 -- 2 -- k=l ch 2 (T V ~ )  ( ~  '~ < k=l ,~ exp (2T V ~ )  (~* '~ < 
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2 2 
< 4 2o ~ (~03 COk)2= 4 ;tO ~o3 
- 2 (2TV~0) k=l 2 ' a exp a exp (2T 2V~0 ) [[ 1[2 

where 2o = 4/T 2. Thus, operator (12) generated by the solution of the extremal problem (3)-(5) ,  (7), and (8) is 
bounded in the norm of the space w~,o(D). 

We examine further the difference of approximate and exact solutions in the norm I[ " ]l 2: 

II z (x) - u ( x ,  z ) l l / =  II R (T,  a)(~o dl -~o) + ( R ( T ,  co) - R ( T ,  0))~o112 _< 

-< II R (T ,  a) (T - ~o ~) 112 + II ( R  (T ,  a)  - R (T ,  0)) V [I 2 -< 

_< w 8 
e 2 T2a 

II ~ - ~a II + II (R  (Z,  ~) - R (Z,  0)) ~o II 2 -< 

(14) 

85 
-~ - v - v -  + If ( R  ( r ,  ~) - R (T ,  0)) ~o II 2. 

e- T'a 

We then assess the closeness of the operator R(T, a) to the operator of the exact solution R(T, 0) of problem 
(3)-(6): 

d =  1[ ( R ( T ,  a ) - R ( T ,  0))T[12= 

, 

k=l 1 + a ch 2 (T V~k ) ~~ 

By virtue of the boundedness of the exact solution u(x, 73 of problem (3)-(6) in the norm of w~,o(D) it can be 
asserted that, for any e > 0, there is an r(e) such that 

Then 

/=@) 

2 <  ch (r  _ ? / s  

r(~) ( 

k = l  1 + = ch 2 (T v%-k) 

+ 
oo 

E 
k = r(e) + 1 

~k ch2 (T Vr~k) iOk _< 
k=l 

1 

1 + a  ch z ( T x ~ k  ) 

For each r(e) it is possible to indicate an a 0 such that, for a < a0, 

+ 

2 
+ e 2 / 8 .  

Hence, 

k=l  1 + a ch  2 ( T - ~ - k )  < e 2 / 8 "  

II (R  ( r ,  a) - R (T ,  0)) ~, II 2 -( 

From Eqs. (14) and (15) we derive 

1/2 
(15) 
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86 e 
Ilz ( x ) - u ( x ,  T ) [ I 2 _ _ _ - -  + ~ .  2 e T2a 

It is evident that there is an a(6) < a 0 such that at any e > 0 there is a sufficiently small 6(e) for which 

and then 

86 e 
e x T2a - 2 

II z (x )  - u ( x ,  T)II 2 

Thus the theorem is proved. 

So, it is demonstrated that with 6 --- 0 and provided the regularization parameter a matches the error 6 (a 

= a(6)) ,  the solution z(x) --- R(T, a)T6(x) converges to the exact solution u(x, T) of problem (3)-(6) in the norm 

of the space w~,o(D). In other words, the operator R(T, a) of (12) generated by problem (3)-(5), (7), and (8) is 

regularizing for the Cauchy problem in the class of functions w~,o(D). 
N o t e 1. U n d e r  the  h y p o t h e s e s  of the  t h e o r e m ,  i n s t e a d  of b o u n d e d n e s s  of u(x,T)E 

wZ,0(O)([[ u(x, T) 112 -< M) it is possible to require boundedness  in Z2Ox(I I u(x, T) II -< M). Under  the 
assumption of greater smoothness of ~o(x), i.e., ~(x) E W2.o(D) instead of T(x) E L2(D), the assertion of the 

theorem remains the same. 

N o t e 2. If the dimension of the space is n < 3, then the operator R(T, a) of (12) will be regularizing in 

the class of continuous functions due to the continuity of the imbedding of the space wZ(D) in C(D) [11 ]. 

By virtue of equivalence of the solutions that is established in Theorem 1, the results of Theorem 2 extend 

also to the problem with a nonlocal condition (3)-(5) and (11). 
A direct solution of the problems formulated above brings about the problem of selecting the regularization 

parameter a (/3). For the problem of minimizing the functional (7), by analogy with [2 ] we may substantiate the 

choice of a from the condition 

II u ( x ,  0 )  - 6 (x)II = 

(the choice of a by the discrepancy),where u(x, 0) is the solution of the direct problem (3)-(5) and (8) with z(x) 
obtained as a result of solving the extremal problem. Because the solutions of the extremal and nonlocal problems 

are equivalent, this way of selecting a is applicable also to the problem with a nonlocal condition (3)-(5) and (11). 
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